On generalized Halley-like methods for solving nonlinear equations
نویسندگان
چکیده
منابع مشابه
On the Generalized Halley Method for Solving Nonlinear Equations
Halley’s method is a famous iteration method for solving nonlinear equations F (X) = 0. Some Kantorovich-like theorems have been given, including extensions for general spaces. Quasi-Halley methods were proposed too. This paper uses the generalized inverse approach in order to obtain a robust generalized Halley method.
متن کاملAdaptive Steffensen-like Methods with Memory for Solving Nonlinear Equations with the Highest Possible Efficiency Indices
The primary goal of this work is to introduce two adaptive Steffensen-like methods with memory of the highest efficiency indices. In the existing methods, to improve the convergence order applied to memory concept, the focus has only been on the current and previous iteration. However, it is possible to improve the accelerators. Therefore, we achieve superior convergence orders and obtain as hi...
متن کاملOn a family of Halley-like methods to find simple roots of nonlinear equations
Keywords: Basin of attraction Simple roots Nonlinear equations Halley method Euler–Chebyshev method a b s t r a c t There are many methods for solving a nonlinear algebraic equation. Here we introduce a family of Halley-like methods and show that Euler–Chebyshev and BSC are just members of the family. We discuss the conjugacy maps and the effect of the extraneous roots on the basins of attracti...
متن کاملPredictor-corrector Halley method for nonlinear equations
In this paper, we suggest and analyze a new two-step predictor–corrector type iterative methods for solving nonlinear equations of the type f(x) = 0 by using the technique of updating the solution. This method can be viewed as a predictor– corrector iterative Halley’s method. We also consider the convergence analysis of the proposed method. To illustrate the efficiency of this new method, we gi...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicable Analysis and Discrete Mathematics
سال: 2019
ISSN: 1452-8630,2406-100X
DOI: 10.2298/aadm190111015p